MEZBAUR RAHMAN

RESEARCH INTERESTS

Natural Language Processing | Large Language Models | Learning from Noisy Labels | Semi Supervised Learning

EDUCATION

University of Illinois Chicago

Ph.D. in Computer Science and Engineering

Current CGPA: 4.00 out of 4.00

Islamic University of Technology

M.Sc in Computer Science and Engineering

Current CGPA: 3.96 out of 4.00

Islamic University of Technology

B.Sc in Computer Science and Engineering

CGPA: **3.86** out of 4.00 (4^{th} in class)

Last semester GPA: 4.00

Chicago, United States Aug 2023 - Present

Gazipur, Banqladesh Jan 2020 - June 2023

Gazipur, Bangladesh

Jan 2016 - Nov 2019

PROFESSIONAL EXPERIENCE

University of Illinois Chicago

Graduate Research Assistant — advised by Prof. Cornelia Caragea

Chicago, United States

Research in Semi-Supervised Learning & Learning from Noisy Labels with LLM Guidance Aug 2023 – Present

University of Illinois Chicago

Graduate Teaching Assistant

Software Engineering Intern

CS 521: Statistical NLP, CS 401: Computer Algorithms I, CS 251: Data Structure

Chicago, United States

Spring 2024, Spring 2025

Islamic University of Technology

Samsung R&D Institute Bangladesh

Lecturer, Department of Computer Science and Engineering

Gazipur, Bangladesh Jan 2020 - July 2023

Dhaka, Bangladesh

Nov 2018 - Jan 2019

PUBLICATIONS

LLM-Guided Co-Training for Text Classification

EMNLP 2025 (Accepted at Main)

the difficulty of validating claims.

• We introduce a novel weighted co-training framework guided by Large Language Models (LLMs), where two encoder-only networks iteratively train each other using dynamically assigned sample weights based on confidence in LLM-generated pseudo-labels. Our method achieves state-of-the-art performance on 4 out of 5 benchmark datasets and ranks first among 14 SSL methods via Friedman test, demonstrating LLMs as effective knowledge amplifiers in semi-supervised learning.

arXiv Link: https://arxiv.org/pdf/2509.16516

Keyword: Semi-Supervised Learning, Large Language Models, Co-Training, Text Classification

Multihop Factual Claim Verification Using Natural Language Prompts Canadian AI 2023

2023

• This research aims to establish a strategy for verifying claims based on evidence sentences by employing prompt fine-tuning of state-of-the-art pre-trained language models. This study's objectives also include developing suitable language prompts for this task. This research also investigates how using multiple sentences as evidence increases

Online Link: https://caiac.pubpub.org/pub/ex7vouwq/release/1

Keyword: Natural Language Processing, Pre-trained Language Models, Prompt Fine Tuning

2025

Sensors Journal

• This study follows an explainable approach to predicting stroke patients based on their biomarker data collected from EEG signals via various machine learning models.

Online Link: https://www.mdpi.com/2008048

Keyword: Electroencephalography, Stroke, Neuroscience, Machine-learning, Explainable AI

BanglaRQA: A Benchmark Dataset for Under-resourced Bangla Language Reading Comprehension-based Question Answering with Diverse Question-Answer Types 2022 Findings of EMNLP 2022

• This paper introduces a novel reading comprehension-based question-answer dataset containing 3000 Bangla Wikipedia context passages and 14889 question-answer pairings. The experiments in this work also improve the performance of a pre-trained transformer model, as evidenced by higher EM(exact match) and F1 scores when compared to previous work on other comparable Bangla datasets.

Online Link: https://aclanthology.org/2022.findings-emnlp.186/

Keywords: Natural Language Processing, Question-Answering, Transformer Models, BanglaT5

Automated Tag Prediction for Movies from Plot Synopses using Neural Networks *ICCIT* 2022

2022

• This study's major purpose is to identify options for improving the prediction of movie tags using plot summaries. Various models are utilized, including vanilla neural network and lstm-based models, as well as several pretrained transformer-based language models, and their performances are then compared.

Online Link: https://ieeexplore.ieee.org/document/10055349

Keywords: Natural Language Processing, Machine Learning, Deep Learning, LSTM, Pretrained Language Models, Tag Prediction.

SKILLS

Programming Languages Python, C/C++, Java, Shell Scripting

Databases MySQL, Oracle SQL

Libraries & Frameworks PyTorch, Kubernetes, Numpy, Matplotlib, Hugging Face, vLLM, Docker

Other Version Control - Git, Latex/Overleaf

ONLINE CERTIFICATION

- Neural Networks and Deep Learning by DeepLearning.AI on Coursera
- Natural Language Processing with Probabilistic Models by DeepLearning.AI on Coursera
- Natural Language Processing with Classification and Vector Spaces by DeepLearning.AI on Coursera

SIGNIFICANT PROJECTS

- Target Invariant Stance Detection Using Large Language Models: In this project, we explore the performance of Large Language Models (LLMs) in stance detection, comparing the zero-shot capabilities of 7B models to fine-tuned smaller models. Our findings reveal trade-offs between model size, fine-tuning, and contextual understanding in NLP tasks. (Github Link)
- LLM-Guided Node Classification in Semi-Supervised Settings: This project integrates an LLM-based sentence encoder with Text-Attributed Graphs to enhance node features and employs LLM-guided pseudo labels to initiate a semi-supervised learning approach. Our results demonstrate that the LLM-guided approach excels with a larger proportion of unlabeled nodes, while the sentence encoder-based node features consistently improve overall performance. (Github Link)

COMPETITIVE PROGRAMMING PROFILES

• CodeChef: trojan_king (Max. Rating: 1775)

• HackerRank : Trojan_King (Max. Rating: 1998)

• Codeforces : Mezbaur (Max. Rating: 1656)